Fabrication and Characterization of Carbon Fiber-Reinforced Nano-Hydroxyapatite/Polyamide46 Biocomposite for Bone Substitute

نویسندگان

  • Zhennan Deng
  • Hongjuan Han
  • Jingyuan Yang
  • Yuanyuan Li
  • Shengnan Du
  • Jianfeng Ma
چکیده

BACKGROUND Ideal bone repair material should be of good biocompatibility and high bioactivity. Besides, their mechanical properties should be equivalent to those of natural bone. The objective of this study was to fabricate a novel biocomposite suitable for load-bearing bone defect repair. MATERIAL AND METHODS A novel biocomposite composed of carbon fiber, hydroxyapatite and polyamide46 (CF/HA/PA46) was fabricated, and its mechanical performances and preliminary cell responses were evaluated to explore its feasibility for load-bearing bone defect repair. RESULTS The resultant CF/HA/PA46 biocomposite showed a bending strength of 159-223 MPa, a tensile strength of 127-199 MPa and a tensile modulus of 7.7-10.8 GPa, when the CF content was 5-20% (mass fraction) in biocomposite. The MG63 cells, showing an osteogenic phenotype, were well adhered and spread on the surface of the CF/HA/PA46 biocomposite. Moreover, the cells vitality and differentiation on the CF/HA/PA46 biocomposite surface were obviously increased during the culture time and there was no significant difference between the CF/HA/PA46 biocomposite and HA/PA (as control) at all the experimental time (P>0.05). CONCLUSIONS The addition of CF into HA/PA46 composite manifest improved the mechanical performances and showed favorable effects on biocompatibility of MG63 cells. The obtained biocomposite has high potential for bone repair in load-bearing sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

Optimum Design of a Coir Fiber Biocomposite Tube Reinforced with Nano Silica and Nano Clay Powder

Due to significant environmental advantages, biocomposites have recently received increasing attention. In the present research, strength of hat-shaped coir fiber biocomposites tubes reinforced with nano powder was evaluated experimentally under 3-point bending tests. The tubes were manufactured using hand lay-up technique and based on Taguchi design of experiment. The effects of different para...

متن کامل

Preparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering

Objecttive(s): Despite the poor mechanical properties of hydroxyapatite, its unique biological properties leads we think about study on improving its properties rather than completely replacing it with other biomaterials. Accordingly, in this study we introduced hydroxyapatite reinforced with hardystonite as a novel bio-nanocompositeand evaluate its in-vitro bioactivity with the aim of developi...

متن کامل

Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites

IIn this work, cobalt-based alloy/ nano bioactive glass (NBG) composites with 10, 15 and 20 wt% NBG were prepared and their bioactivity after immersion in simulated body fluid (SBF) for 1 to 4 weeks was studied. The scanning electron microscopy images of two- step sintered composites revealed a relatively dense microstructure the density of which decreased with the increase in the NBG amount. M...

متن کامل

Fabrication and Characterization of Polycaprolactone – Zeolite Y Nanocomposite for Bone Tissue Engineering

In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2017